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LETTER TO THE EDITOR 

Dynamics of interface width in the three-dimensional Q2R 
Ising model 
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Department of Physics, University of Toronto, Toronto, Ontario, M5S 1A7 Canada 

Received 24 September 1987, in final form 26 October 1987 

Abstract. The Q2R cellular automaton is used to simulate the growth of the liquid-vapour 
interface in the 3D Ising model. At the critical point we find that its width increases with 
time in a power law manner with an exponent 0f0.34~10.01,; below the critical temperature 
we study the size dependence of the equilibrium width. 

The Q2R algorithm [l-31 of cellular automata seems to approximate reasonably the 
Ising model, though some deviations were also observed [ 11. Its simplicity and speed 
make it particularly attractive for computer simulations. Basically, a spin is flipped if 
and only if such a spin flip does not change the interaction energy of the spins. Thus 
the Q2R algorithm approximates a microcanonical simulation of the Ising model, with 
fixed energy but fluctuating magnetisation. 

We apply this technique here to the liquid-gas interface in the lattice gas model, 
i.e. to a domain wall in the Ising magnet. In the upper half of our L x L x H simple 
cubic lattice the spins are initialised randomly as mostly up, and in the lower half as 
mostly down; an initial concentration p of up spins corresponds to a thermal energy 
density of 12p( 1 - p )  in units of the nearest-neighbour exchange energy. Two additional 
buffer'planes, at the top with all spins up and at the bottom with all spins down, were 
maintained in order to ensure the presence of an interface. In the horizontal plane 
periodic (helical) boundary conditions were used. 

We then let the system evolve according to the Q2R rule mentioned above and see 
how the initially quite sharp interface between vapour and liquid broadens in the 
course of time. (The time t is the number of computer sweeps through the whole 
lattice.) In particular, we want to know whether the width W ( t )  depends on time t 
in a power law manner or as log t [4-81, in the region where W is much smaller than 
the equilibrium width for infinite times, and much larger than unity. Also, we check 
if, for the equilibrium width, the Q2R algorithm gives the logarithmic size dependence 
well known [9,10] for the usual Ising model. 

Storing one spin per word we needed 5 ps per simulation step on a SUN3/260 
work station; simulating ten systems simultaneously, with ten spins per word, we 
reached 0.6 ps per step. Usually we took H as 96 and worked with lengths L up to 
99 in our L x L x H lattices. For a given configuration, with isolated holes and droplets, 
one cannot uniquely define a reasonable interface position z ;  thus our width was 
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determined via averages over all heights z, involving the shape of the magnetisation 
profile. The squared width W 2  was determined as [(z2)-(z)*], with the height z, and 
z2 weighted proportionally to the magnetisation gradient as explicitly defined in [9, 
equation (4)] and [lo,  equation (l)]. (Results for W ( f ) ,  qualitatively similar to the 
ones described below, are also obtained using local interface energy density as a weight, 
but the accuracy using the magnetisation gradient is better.) 

For values of p < p ,  = 0.2125, the width seems to increase with t before saturating 
to its equilibrium value. 

As an example of the size dependence of the equilibrium width, figure 1 shows 
W:,, against log L at p = 0.03 and 0.1, corresponding to T /  T, = 0.7 and 0.89, respec- 
tively. As expected from the earlier studies [9, IO], Ws,, seems to increase linearly 
with log L. 
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Figure 1. Variation of the squared saturation width Wi,, with L (note the semilogarithmic 
plot) for (A) p = 0.03 ( T /  T, = 0.7) and ( B )  p = 0.1 ( T /  T, = 0.89). The results are averages 
over 100 runs for L x L x H systems with H = 96 and 24. 

At T = T,, corresponding to p = 0.2125, the interface width should diverge in 
equilibrium. This makes it easier to study its time dependence at intermediate times 
than for p below p c .  In figure 2 we show In( W 3 ( t ) )  against In(t) at the Curie point 
p =pF.  The data appear to fit a straight line with a slope of about 0.7. Thus we infer 
that W (  t )  behaves like A linear fit to the data for 99 x 99 x 96 and 99 x 99 x 48 
systems with an average over 1300 runs for the former and over 110 runs for the latter 
leads to a slope of 0.37 *0.02. A subset of these data, shown in figure 2, for the 
99 x 99 x 96 system with an  average over 1000 runs leads to a slope of 0.345 f 0.Ol5. 
The error bars in these values of slope are purely statistical; due to other possible 
systematic errors, a slope o f f  is not ruled out. 

For temperatures less than T,, a log t behaviour of the squared width for a 
three-dimensional system has been expected theoretically [4,6]. Here we find a power 
law behaviour for the width at T = T,. 
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